

Tetrahedron Letters 40 (1999) 7493-7496

Asymmetric synthesis of palitantin from the (5*R*)-*tert*-butyldimethylsiloxy-2-cyclohexenone

Georges Hareau, Masakazu Koiwa, Takeshi Hanazawa and Fumie Sato *

Department of Biomolecular Engineering, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa 226-8501, Japan

Received 12 July 1999; revised 9 August 1999; accepted 12 August 1999

Abstract

(+)-Palitantin (2) has been synthesized in 25% overall yield from the (5R)-tert-butyldimethylsiloxy-2-cyclohexenone [(R)-1] where a remarkable diastereoselective cat. OsO₄ cis-dihydroxylation of (R)-1 furnished the precursor of the optically pure (5R,6R)-bis-trimethylsiloxy 2-cyclohexenone (7) which underwent highly selectively the 1,4-addition reaction of the 1,3-heptadienyl cyanocuprate to give, after trapping of the corresponding copper enolate with formaldehyde, the target compound. © 1999 Elsevier Science Ltd. All rights reserved.

Keywords: asymmetric synthesis; copper; copper compounds; cyclohexenones; hydroxylation.

We have recently reported the preparation of both enantiomers of the 5-tert-butyldimethylsiloxy-2-cyclohexenone, (R)- and (S)-1, and their reactions with organocopper reagents which, interestingly, enable the preparation of both diastereoisomers of the 1,4-adducts highly selectively by proper use of either lower- or higher-order cyanocuprates. We have synthesized several natural products such as carvone, penienone and penihydrone from 1 which had been used as a chiral 2,5-cyclohexadienone synthon. C We then turned our attention to palitantin (2) which appeared to be an attractive target for the further utilization of 1 in organic synthesis.

(+)-Palitantin (2), isolated from the *Penicillium Palitans*, 2 is a precursor of frequentin (3) which has shown antifungal and antibiotic activities. 3 So far, one racemic 4 and two enantioselective syntheses of 2 have been reported. 5,6 Our synthesis of the naturally occurring (+)-2 was planned as illustrated in Scheme 1 which involves a stereoselective *cis*-dihydroxylation of (R)-1, conversion of the resulting *cis*-1,2-diol into the 5,6-disiloxy-2-cyclohexenone by elimination of the TBSO group after protection of the 1,2-diol moiety as silylethers and a stereoselective 1,4-addition of the (E,E)-1,3-heptadienylcuprate to it, followed by a trapping of the resulting copper enolate with formaldehyde. This retrosynthetic approach proved to be fruitful as shown in Scheme 2.

The cis-dihydroxylation of (R)-1, to our satisfaction, proceeded highly stereoselectively by catalytic osmium dihydroxylation (cat. OsO₄-NMO) to furnish the single diastereomer 4 in 80% yield, the

^{*} Corresponding author: Tel: +0081 45 924 5787; fax: +0081 45 924 5826; e-mail: fsato@bio.titech.ac.jp

Scheme 1. Retrosynthetic analysis of 2 from (R)-1

OSiMe₃

OSiMe₃

OSiMe₃

OSiMe₃

OSiMe₃

OSiMe₃

$$d$$

OSiMe₃
 d

OSiMe₃
 d

OSiMe₃

OSiMe₃
 d

OSiMe₃
 d
 d

OSiMe₃
 d

Scheme 2. Reagents and conditions: (a) OsO₄ (5 mol%)–NMO (2.5 equiv.), acetone– H_2O , rt, 24 h; (b) BSA (3 equiv.), CH₃CN, rt, 15 h; (c) LiHMDS (2 equiv.), TMEDA (2.5 equiv.), toluene– C_6H_{14} , $-78^{\circ}C \rightarrow rt \rightarrow -78^{\circ}C$ then TMSCl (2 equiv.), and 5 in toluene were added over a period of 1 h, stirred for 2 h at $-78^{\circ}C$, then addition of Et₃N and work-up; (d) dry-TBAF (5 mol%), 4 Å MS, THF, $-30^{\circ}C$, 5 min; (e) hept-3-ene-1-yne/Cp₂Zr(H)Cl, THF, rt 15 min then MeLi (3 equiv.), $-78^{\circ}C$, 10 min then CuCN·2LiCl, $-78^{\circ}C$, then (R)-1, $-78^{\circ}C$, 40 min; (f) sat. NH₄Cl. (g) CH₂O/Et₂O, $-78^{\circ}C$, 1 h and sat. NH₄Cl. (h) 1N citric acid/MeOH, rt, 10 min; (i) DBU (3 equiv.), CH₂Cl₂, rt, 4 h. Abbreviations: BSA=bis-(trimethylsilyl)acetamide; DBU=1,8-diazabicyclo[5.4.0]undec-7-ene; LiHMDS=lithium bis(trimethylsilyl)amide; MS=molecular sieves; NMO=4-methylmorpholine N-oxide; TBAF=tetrabutylammonium fluoride; TMEDA=N,N,N',N'-tetramethylethylenediamine

stereochemistry of which had been assigned after completion of the total synthesis. Bearing in mind the detailed study of Hanessian et al. on the regioselective enolization of a 2,3-(trimethylsiloxy)-5-substituted cyclohexanone, we protected the *cis*-1,2-diol 4 as the corresponding *bis*-trimethylsilyl ether 5, which was obtained as a white crystalline product. Then, the desiloxylation of 5 into 7 was first carried out with LiHMDS/hexane in the presence of TMEDA at -78°C in toluene. The reaction, however, resulted in a steady recovery of 5 in 50% yield with production of 7 in about 35% yield (73% yield based on the consumed 5) and our efforts aiming at improving this yield by changing the reaction conditions (base, solvent, temperature and/or reaction time) did not meet with much success. We, therefore, searched for other conditions and finally achieved a satisfactory result through the conversion of 5 into the trimethylsilylenol ether 6 quantitatively (TMSCl-internal quench)⁸ and the following transformation into 7 in 80% yield upon treatment with catalytic dry-TBAF (5 mol%). With 7 in hand, the synthesis of 2 was completed as follows: the 1,4-addition reaction of the higher-order (*E,E*)-1,3-heptadienyl cyanocuprate (prepared via hydrozirconation of the (*E*)-hept-3-ene-1-yne and transmetallation with Me₂Cu(CN)Li₂)^{1c,10} onto 7 proceeded highly selectively in a *trans*-fashion to yield, after hydrolysis,

10 in 80% yield as a single diastereoisomer. The adduct 10 had been synthesized by Hanessian et al.⁵ as the precursor of 2: the proton NMR spectrum as well as the $[\alpha]_D$ value of the compound obtained here¹¹ are well coincident with the ones reported.⁵ Nevertheless, we tried to trap the copper enolate (8) with formaldehyde in order to reach 2 directly: the reaction gave, after work-up, a rather complex mixture consisting of 9 and its partially desilylated products at C2 and C3 and possibly their epimers (judged by proton NMR of the crude product). The crude reaction mixture was then treated with 2N H₂SO₄/MeOH or 1N citric acid/MeOH to give, after column chromatography, the expected product 2 and a considerable amount of an epimer (from 10 to 20%); treatment of the corresponding mixture with DBU at rt cleanly afforded the desired 2. Thus, 2 was obtained in a modest 39% overall yield from 7.¹¹

In conclusion, we have synthesized (+)-palitantin in a straightforward and efficient process from (R)-1 (six steps, 25% overall yield). The discovery of the highly diastereoselective cis-dihydroxylation of a 5-siloxy-2-cyclohexenone which, to the best of our knowledge, has not been reported in the literature, prompted us to investigate the dihydroxylation of a variety of 5-substituted 2-cyclohexenones, the results of which will be reported in due course.

Acknowledgements

We are grateful to the Daiso Co., Ltd. for generous supply of the starting material enabling the preparation of the optically active (R)- and (S)-1. G.H. thanks the Japan Society for the Promotion of Science for financial support. Finally, Dr. S. Okamoto, for useful discussions, and Koki Fukuhara, for technical assistance, must be acknowledged.

References

- (a) Hikichi, S.; Hareau, G.; Sato, F. Tetrahedron Lett. 1997, 38, 8299. (b) Hareau, G.; Hikichi, S.; Sato, F. Angew. Chem., Int. Ed. Engl. 1998, 37, 2099, and Angew. Chem. 1998, 110, 2221. (c) Hareau, G.; Koiwa, M.; Hikichi, S.; Sato, F. J. Am. Chem. Soc. 1999, 121, 3640.
- Birkinshaw, J. H.; Raistvick, H. Biochem. J. 1936, 30, 801. Birkinshaw, J. H. Biochem. J. 1952, 51, 271. Bowden, K.; Lythgoe, B.; Marsden, D. J. S. J. Chem. Soc. 1959, 1662.
- 3. Curtis, P. J.; Hemming, H. G.; Smith, W. K. Nature 1951, 167, 557.
- 4. Ichihara, A.; Ubukata, M.; Sakamura, S. Tetrahedron 1980, 36, 1547, and Tetrahedron Lett. 1977, 3473.
- 5. Hanessian, S.; Sakito, Y.; Dhanoa, D.; Baptistella, L. Tetrahedron 1989, 45, 6623.
- 6. Deruyttere, X.; Dumortier, L.; Van der Eycken, J.; Vandewalle, M. Synlett 1992, 51.
- 7. For a review on the OsO₄-dihydroxylation, see: Schröder, M. Chem. Rev. 1980, 80, 187.
- 8. Corey, E. J.; Gross, A. W. Tetrahedron Lett. 1984, 25, 495.
- 9. The commercial THF solution (5% water) was first evaporated, then freeze-dried for 12 h.
- 10. Lipshutz, B. H.; Ellsworth, E. L. J. Am. Chem. Soc. 1990, 112, 7440.
- 11. Spectroscopic and physical data of key intermediates and palitantin: the NMR data were recorded in CDCl₃, respectively, at 300 MHz and 75 MHz for the proton and carbon, with reference at 7.26 ppm for the proton and at 77.0 ppm for the carbon. Compound 2 (white solid): $[\alpha]_D^{23}$ =+4.49 (c 0.32, CHCl₃); 1 H NMR: δ 6.11 (dd, J=14.7, 10.2 Hz, 1H), 5.98 (ddt, J=14.7, 10.5, 1.5 Hz, 1H), 5.66 (dt, J=14.4, 7.2 Hz, 1H), 5.38 (dd, J=14.7, 9.0 Hz, 1H), 4.40–4.34 (m, 1H), 4.23–4.19 (m, 1H), 3.86 (d, J=2.7 Hz, 1H), 3.82–3.75 (m, 2H), 2.83 (ddddd, J=12.0, 12.0, 9.3, 3.9 Hz, 1H), 2.61 (br s, 1H), 2.39 (dddd, J=11.4, 4.8, 4.8, 1.2 Hz, 1H), 2.38 (br s, 1H, OH), 2.15 (ddd, 14.7, 3.9, 3.9 Hz, 1H), 2.04 (dt, J=7.2, 7.2 Hz, 2H), 1.85 (br dd, J=13.3, 13.3 Hz, 1H), 1.40 (tq, J=7.2, 7.2 Hz, 2H), 0.90 (t, J=7.2 Hz, 3H); 13 C NMR: δ 211.7, 135.3, 132.8, 131.1, 129.4, 77.1, 71.7, 59.7, 54.6, 39.0, 35.3, 34.6, 22.2, 13.6. Compound *epi*-2 (white solid slightly less polar than 2): 1 H NMR: δ 6.18–5.94 (m, 2H), 5.67 (dt, J=14.4, 6.9 Hz, 1H), 5.52 (dd, J=15.0, 7.5 Hz, 1H), 4.43 (br s, 1H), 4.41–4.35 (m, 1H), 4.01–3.83 (m, 2H), 3.22–3.10 (m, 1H), 2.91–2.81 (m, 2H), 2.59 (br s, 1H), 2.15–1.99 (m, 4H), 1.41 (tq, J=7.5, 7.5 Hz, 2H), 0.90 (t, J=7.5 Hz, 3H). Compound 4 (oil): $[\alpha]_D^{26}$ =+22.95 (*c* 2.10 CHCl₃); 1 H NMR: δ 4.36–4.24 (m, 2H), 4.14

(dd, J=3.9, 1.5 Hz, 1H), 3.82 (br s, 1H), 2.80 (ddd, J=13.5, 5.1, 2.7 Hz, 1H), 2.60 (br s, 1H), 2.46 (ddd, J=13.5, 10.5, 1.2 Hz, 1H), 2.39 (dddd, J=14.1, 4.2, 4.2, 2.7 Hz, 1H), 1.85 (ddd, J=14.1, 10.8, 2.4 Hz, 1H), 0.87 (s, 9H), 0.07 (s, 3H), 0.05 (s, 3H); 13 C NMR: δ 207.6, 77.0, 69.3, 66.9, 48.8, 38.5, 25.5, 17.8, -5.1. Compound **5** (white solid): mp 39°C; $[\alpha]_0^{23}$ =+19.66 (c 0.72 CHCl₃); 1 H NMR: δ 4.30 (dddd, J=4.2, 4.2, 4.2, 4.2 Hz, 1H), 4.14 (ddd, J=6.0, 3.0, 3.0 Hz, 1H), 4.08 (d, J=2.7 Hz, 1H), 2.74 (ddd, J=13.5, 4.8, 1.8 Hz, 1H), 2.29 (dd, J=12.9, 8.4 Hz, 1H), 2.20–2.09 (m, 1H), 1.79 (ddd, J=13.2, 8.4, 2.7 Hz, 1H), 0.86 (s, 9H), 0.11 (s, 9H), 0.08 (s, 9H), 0.05 (s, 3H), 0.04 (s, 3H); 13 C NMR: δ 206.1, 79.3, 71.3, 66.7, 48.1, 39.9, 25.6, 17.9, 0.1, 0.0, -5.0, -5.1. Compound **7** (low melting point solid): $[\alpha]_0^{23}$ =-3.98 (c 0.71 CHCl₃); 1 H NMR: δ 6.75 (dddd, J=10.2, 3.9, 3.9, 0.9 Hz, 1H), 6.01 (ddd, J=10.2, 1.8, 1.8 Hz, 1H), 4.24–4.18 (m, 2H), 2.59 (dd, J=3.9, 1.8 Hz, 1H), 2.57 (dd, J=3.9, 1.8 Hz, 1H), 0.15 (s, 9H), 0.08 (s, 9H); 13 C NMR: δ 197.7, 145.4, 128.4, 77.7, 72.8, 34.3, 0.17, 0.14. Compound **10** (oil): $[\alpha]_0^{23}$ =+40.4 (c 0.18 CHCl₃) [Lit. +41.2 (c 1.09 CHCl₃)]; 13 C NMR: δ 206.8, 134.1, 133.9, 130.0, 129.7, 79.0, 74.5, 45.8, 38.4, 35.6, 34.6, 22.3, 13.6, 0.2, 0.1.